Lignocellulose pretreatment severity - relating pH to biomatrix opening.

نویسندگان

  • Mads Pedersen
  • Anne S Meyer
چکیده

In cellulose-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic feedstock is a crucial prerequisite for increasing the amenability of the cellulose to enzymatic attack. Currently published pretreatment strategies span over a wide range of reaction conditions involving different pH values, temperatures, types of catalysts and holding times. The consequences of the pretreatment on lignocellulosic biomass are described with special emphasis on the chemical alterations of the biomass during pretreatment, especially highlighting the significance of the pretreatment pH. We present a new illustration of the pretreatment effects encompassing the differential responses to the pH and temperature. A detailed evaluation of the use of severity factor calculations for pretreatment comparisons signifies that the multiple effects of different pretreatment factors on the subsequent monosaccharide yields after enzymatic hydrolysis cannot be reliably compared by a one-dimensional severity factor, even within the same type of pretreatment strategy. However, a quantitative comparison of published data for wheat straw pretreatment illustrates that there is some correlation between the hydrolysis yields (glucose and xylose) and the pretreatment pH, but no correlation with the pretreatment temperature (90-200°C). A better recognition and understanding of the factors affecting biomatrix opening, and use of more standardized evaluation protocols, will allow for the identification of new pretreatment strategies that improve biomass utilization and permit rational enzymatic hydrolysis of the cellulose.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined Severity during Pretreatment Chemical and Temperature on the Saccharification of Wheat Straw using Acids and Alkalis of Differing Strength

Acids and alkalis are considered important catalysts in biomass pretreatment, which is essential to overcome the recalcitrance of lignocellulose for sugar release. In this study, the effects of various chemicals and temperatures on the pretreatment and subsequent enzymatic hydrolysis of wheat straw were investigated. The conversions of glucan and xylan during pretreatment and enzymatic hydrolys...

متن کامل

Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw

BACKGROUND The recent development of improved enzymes and pentose-using yeast for cellulosic ethanol processes calls for new attention to the lignocellulose pretreatment step. This study assessed the influence of pretreatment pH, temperature, and time, and their interactions on the enzymatic glucose and xylose yields from mildly pretreated wheat straw in multivariate experimental designs of aci...

متن کامل

Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods.

This study demonstrates sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust bioconversion of hardwoods. With only about 4% sodium bisulfite charge on aspen and 30-min pretreatment at temperature 180 degrees C, SPORL can achieve near-complete cellulose conversion to glucose in a wide range of pretreatment liquor of pH 2.0-4.5 in only about 10 h enzymatic hydrolysi...

متن کامل

Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine.

The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL pretreatment resulted in fib...

متن کامل

Application of Nano-lignocellulose for Removal of Nickel Ions from Aqueous Solutions

Nickel is one of the toxin heavy metals in surface waters. Developing new approaches aimed at removing heavy metals from aqueous solutions that are simultaneously economical and environmentally friendly is of great importance. The purpose of this study will be using Nano-lignocellulose adsorbent as a natural material to remove nickel heavy metal. In this study, several important environmental p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • New biotechnology

دوره 27 6  شماره 

صفحات  -

تاریخ انتشار 2010